Requests
TrainIIDReqBody
Fields:
training_data
: the raw bytes representing the training data. Is a CSV file as a sting. Should not be accessed directly.feature_types
: the columns in the training data.target
: the targetColumn
.folds
: the number of folds during cross validation.validation_data
: the optional raw bytes representing the validation data. Should not be accessed directly.holdout_data
: the optional raw bytes representing the holdout data. Should not be accessed directly.fold_assignment_column
: an optional field denoting a column representing the fold that each row belongs to. If empty,exodusutils
will cut the cv folds by taking the modulo byfolds
to the row indices.
Methods:
get_feature_names
: returns the names of the columns.get_training_df
: returns the parsed pandasDataFrame
generated from the bytes intraining_data
. Note that the data types of the columns will correspond to the ones specified infeature_types
.get_validation_data
: returns the parsed pandasDataFrame
generated from the bytes invalidation_data
, orNone
if there's no validation data.get_holdout_data
: returns the parsed pandasDataFrame
generated from the bytes inholdout_data
, orNone
if there's no holdout data.
PredictReqBody
Fields:
model_id
: the ID of the model you want to predict with.data
: the raw bytes representing the prediction data. Is a JSON string. Should not be accessed directly.threshold
: the threshold for classification predictions.keep_columns
: the columns to keep in the prediction results.
Methods:
get_prediction_df
: takes in a list ofColumn
s, and returns a pandasDataFrame
representing the prediction data. The list ofColumn
should be stored into MongoDB once training is completed.